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1. INTRODUCTION 
 

1.1 BACKGROUND 
 
Over the last several decades numerous hazardous waste sites have taken a heavy toll on 
the nation’s environment.  Through the release of toxic chemicals or other pollutant such 
sites have contaminated either the air, soil, or water beneath them.  Depending on the 
type of contaminant, these areas may not be safe for human habitation.  Any site that has 
been contaminated with a hazardous waste and poses a risk to human health or the 
environment has been classified as a Superfund site by the EPA (EPA 2007).  Those sites 
that pose the greatest environmental risk have been classified as national priority list 
(NPL) sites, and are eligible for federal clean-up dollars.   
 
Of the 15 active NPL sites in Kentucky, the Paducah Gaseous Diffusion Plant (PGDP) is 
contaminated the worst.  The PGDP is an active uranium enrichment facility located in 
approximately 10 miles West of Paducah, Kentucky and 3.5 miles south of the Ohio 
River (KRCEE 2007).   
 
The area of study for this project is the Paducah Gaseous Diffusion Plant (PGDP) and 
surrounding areas that are enclosed by the DOE Water Policy Boundary (Figure 1).  The 
Water Policy Boundary was defined by DOE as the area that contains or has potential to 
contain properties overlying the contamination plume (KRCEE 2007).   The PGDP site is 
located on land owned by the DOE.  Other property in the water policy boundary is 
owned by the Tennessee Valley Authority (TVA), the West Kentucky Wildlife 
Management Area (WKWMA), and private owners.   
 
At the PGDP site, soil and groundwater has been contaminated with trichloroethylene 
(TCE).  TCE is a volatile organic chemical (VOC) and is part of a family of synthetic 
chlorinated hydrocarbons.  It has been manufactured as a solvent with its greatest appeal 
being a reduced potential for fire or explosion (Ensley, 1991).  TCE is typically a 
colorless or blue organic liquid (EPA 2007) with an odor like chloroform and a sweet, 
burning taste.  TCE was used as a solvent in the degreasing of metal parts at the PGDP 
site.   
 
A common method of TCE entering the environment is by leaching into the soil.  TCE 
has a tendency to stick to soil particles and remain there for a long time (ASTDR 2007).  
This will lead to TCE contaminating the groundwater and potentially nearby surface 
water. TCE does not last long in surface water and will evaporate quickly so it is 
commonly found as a vapor in the air (ATSDR 2007).  TCE at the PGDP site has leached 
into the soil and reached the groundwater.  Currently groundwater seepage is transporting 
the TCE towards the Ohio River.  TCE has also been found in drinking water wells 
around the PGDP site.   
 
The long term health effects associated with exposure to TCE are not yet completely 
understood.  However, the Environmental Protection Agency (EPA) has set a Maximum 
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Contaminant Level Goal (MCL) for TCE of 5 parts per billion (ppb) or 5 µg/L.  This is 
the value at which none of the potential health problems caused by TCE should occur.   
 
TCE has been determined to be “probably carcinogenic to humans” by the International 
Agency on Research for Cancer (IARC) (ATSDR 2001).  Therefore it poses a potential 
health risk to the local population.  Drinking water with amounts over the MCL for an 
extended period of time could result in liver and kidney damage (ATSDR 2007).  There 
is also some evidence suggesting that TCE can impair fetal development in pregnant 
women (ATSDR 2007).   
 
Some residents around the PGDP site get drinking water from wells which could be 
contaminated with TCE.  These wells have now been identified and the users given a 
municipal supply of drinking water (KRCEE 2007).  These residents have agreed to not 
drill any more wells, however future residents may still drill wells which could lead to 
possible human exposure to TCE contamination (KRCEE 2007).   
 

1.2 PROBLEM STATEMENT 
 
Since 1997 a pump-and-treat (P&T) operation has been used to try and contain the spread 
of the existing TCE plume.  Extraction wells placed around the site extract groundwater 
to the surface.  Once the contaminated groundwater has reached the surface it is treated 
by air-stripping to remove the TCE.  The location of the P&T wells currently in operation 
is shown in Figure 2.  The theoretical P&T wells shown in the figure represent potential 
wells that could be added to the system to increase the removal of contaminated 
groundwater.  Observations wells have been drilled to measure TCE concentrations down 
gradient of the plant.   
 
To determine the future extent of the TCE contamination plume an artificial neural 
network (ANN) has been developed.  This model has inputs of pumping rates at 
extraction wells and will forecast TCE concentrations in an observation well for future 
years.  This ANN model developed using the theoretical and existing extracting wells as 
inputs, and the TCE concentrations at Observation Well Bayou-1 for years 2009, 2015, 
2021, and 2027 as outputs.   
 
If there is a need to reduce the TCE concentration below a maximum concentration (i.e. 
the MCL), the pumping rates (inputs) of this model can be changed until this 
concentration is obtained.  Numerous combinations of pumping rates are available to 
achieve the concentration.  Since all extraction wells cost money to operate, the question 
then becomes, what is the optimum combination of pumping rates to minimize the cost?  
To determine this optimum combination of pumping rates, the ANN model will be 
coupled with a box-complex optimization technique.  The optimization aspect will be to 
minimize the cost of the pumping while not validating maximum concentration 
constraint.  Only year 2027 will be evaluated for this study.   
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Figure 1: Layout of the PGDP and Surrounding Areas Including the Modeled Existing TCE Plume 
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Figure 2: Location of Wells in PGDP Site used in ANN Models 
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2. MATHEMATICAL FORMULATION OF PROBLEM 
 

2.1 OBJECTIVE FUNCTION 
 
The objective of this optimization is to minimize the pumping costs of the extraction 
wells at the PGDP.  The only costs considered are the cost per unit discharge.  Capital 
costs of pumps are not considered.  Cost for each pump was arbitrarily determined for the 
purpose of this project.  The arbitrarily chosen values of cost for each well are shown in 
Table 1.  The objective function can be stated as follows: 
 

∑
=

=
n

i
iiCqzMin

1

)(  Equation 1 

 
where z is the total cost for all wells per unit time, qi is the pumping rate at the ith well 
and Ci is the cost per unit volume of the ith well.  The total cost for the length of the P&T 
process can then be found by multiplying z by the length of time that the pumps will be in 
operation.  It was assumed for this study that the wells would be operating twelve hours 
per day, 365 days per year, for a total of 20 years.  So the total cost evaluated will be the 
value of z multiplied by 20 years.   
 
 

Table 1: Pumping Costs (arbitrarily chosen) 
Extraction 

Well  Cost ($/gal.)
1 0.05
2 0.06
3 0.04
4 0.05
5 0.06
6 0.04
7 0.05
8 0.06
9 0.04
10 0.05
11 0.06
12 0.04
13 0.05
14 0.06
15 0.04
16 0.05
17 0.06
18 0.04  
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2.2 CONSTRAINTS 
 
An implicit constraint to the box-complex is that the pumping rates must decrease the 
TCE concentration in observation well Bayou-1 below 30 ug/L.  This constraint will be 
evaluated based on an artificial neural network model developed by Kopp (2007).  This 
ANN forecasts TCE concentrations for the year 2027 when given the pumping rates of 
the 18 wells in the PGDP area.  When a point in the complex is determined it will be 
input into the ANN model to determine the concentration at the observation well.  If this 
concentration is greater than 30 ug/L, the point is considered infeasible and a new point 
will be generated.  This constraint’s practical use is that it ensures progress is being made 
in reducing the concentration of TCE due to pumping and treating of contaminated 
groundwater.  The ANN was embedded in the optimization to make it easier to evaluate.   
 
There is an explicit constraint on the range of the pumping rates.  They must be between 
0 and 100 gpm.  This is the range of pumping rates used to train the ANN model.  This is 
also the reason that the constraint of 30 ug/L was used rather than the MCL of 5 ug/L.  
This constraint must be within the TCE values that the ANN model was trained with, 
which was about 25 to 80 ug/L.  Therefore, 30 ug/L was chosen as the reduced 
concentration after 20 years of pumping.  The MCL (5ug/L) was not used as the 
constraint since the ANN forecasts that even with the maximum pumping rate at all wells 
the MCL can still not be obtained.   
 
 

3. DISCUSSION OF METHODS USED 
 

3.1 ARTIFICIAL NEURAL NETWORKS 
 
Artificial neural networks (ANN) are an inductive modeling technique used in many 
fields of research.  ANNs are popularly applied in forecasting, pattern recognition, and 
classification problems.  An ANN serves as an alternative to linear and non-linear 
regression and is very useful when the actual physical relationship between two or more 
variables is unknown.  Thus they are considered a black box method where input is given 
to the model and an output and is then obtained.   
 
A supervised training approach was used for this study.  Supervised training is where 
inputs as well as known outputs are required to perform the training of the model.  
During the training process the ANN acquires the hidden knowledge by studying the 
inter-relationship between the input and output data.  The goal of the training process is 
to minimize the error between the observed and the predicted output of the model.   
 
A feed-forward multi-layered perceptron (MLP) was used as the model architecture.  In 
this architecture neurons are arranged in layers.  Input layer neurons are buffers.  The 
hidden layer and output layer neurons are defined as activation functions.  An activation 
function will transform the input and pass it to the subsequent layer.  The result of the 
output neuron will be the output of the model to the user.   
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Neurons in different layers are interconnected by weights.  The information is passed 
from left to right (i.e. input to hidden layer, hidden to output layer).  The trained 
knowledge of the model is stored in these weights.   Equation 3 shows how the trained 
knowledge of the weights as it is applied to the inputs.   
 

j

n

i
ii netwx =∑

=1
1  Equation 2 

 
where xi is the input from the ith neuron in the preceding layer and w1i is the weight 
interconnecting the ith neuron in the preceding layer to neuron 1 in the hidden layer (see 
Figure 3).  Netj is the weighed sum and this information is then transformed by the 
activation function as shown in Equation 4.   
 

jnetj e
netf λ−+

=
1

1)(  Equation 3 

 
where λ is a learning rate which determines how much the function will transform.  The 
interconnecting weights are redefined by the training algorithm and represent the 
knowledge gained by the ANN model.  A new set of inputs can then be used and the 
process repeated.   
 
A back-propagation training algorithm was used.  The mathematical equivalent of this is 
a steepest descent algorithm.  In this training algorithm the weights of the model are 
adjusted after each dataset is run through the model.  An epoch is known as one complete 
run of the datasets through the ANN model.  Multiple epochs are performed in the model 
to properly obtain all the knowledge.    
 

 
Figure 3: General ANN Model Architecture 
 
 
Each ANN model will be different and will depend on the data available to train with, the 
desired output, and the architecture of the model used.  The architecture of the ANN 

 7



model is dependent highly on the type of problem being considered (Maier and Dandy, 
1999).  Numerous studies have shown that the best setup for an ANN consists on one 
input, one hidden, and one output layer.  However this is not always the case, as some 
functions may prove to be difficult to approximate with one hidden layer thus requiring 
an additional layer of hidden nodes (Cheng and Titterington, 1994).  The number of input 
nodes is fixed to the number of model inputs while the number of output nodes is fixed to 
the number of model outputs.  The number of nodes in the hidden layer is critical since it 
will determine the number of connection weights (Maier and Dandy 1999).   
 

3.1.1 Training, Testing, and Validation 
 
The more datasets that are available to train and validate the model, the more accurate the 
model will be.  After training has finished a model needs to be validated to ensure that it 
is a robust model and that it is not over training the data.  Validation needs to occur with 
a separate group of datasets that has not been used in training or testing process (Maier 
and Dandy 1999).   
 
Caution needs to be taken to prevent a biased model.  The most standard way to do this is 
to divide the datasets into three sub-sets: a training set, a testing set, and a validation set.  
Literature typically suggests division of data into training/testing and validation of 80% 
vs. 20% or 70% vs. 30%.  The training and testing data is then further divided by the 
same percentage as the previous division.  Each sub-set of data must be representative of 
the entire dataset to ensure good training (Maier and Dandy 1999).  Obviously the 
training set is used to train the ANN model.  The testing set should not be used in training 
so that the data is new to the model.  It can then be simulated in the model and the error 
results from training and testing can be compared.  If the final error indices are similar for 
training and testing data then the model can be considered robust.   
 
If the training and testing errors are significantly different, then memorization most 
probably took place during training and a better model will need to be developed.  Too 
many connection weights will allow overtraining of the data which is where the model 
has learned the idiosyncrasies of the training set (memorization of data) and thus a loss of 
ability to generalize (Maier and Dandy 1999).  When memorization occurs, the model has 
been over-trained and has captured noise from the dataset.  Memorization of the model 
can be detected by a continual reduction in the training set error while the testing set error 
remains the same or becomes worse (Maier and Dandy 1999).   
 

3.1.2 Activation Functions 
 
Types of activation functions commonly used are logistic sigmoid (unipolar activation) 
with an output variation of 0 to 1, hyperbolic tangent sigmoid (bipolar activation) with an 
output variation of -1 to 1, and linear that only has values of 0 and 1.  Maier and Dandy 
(1999) found that other transfer functions may be used as long as they are differentiable.  
Normalization of the data must take place to ensure that values of netj stay with the range 
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of the function  Typically normalization occurs by dividing a category of inputs by the  
maximum value in that category.  The unipolar activation function was used for the ANN 
models in this study.  The graph of this function is shown in Figure 4.   
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Figure 4: Graph of the Unipolar Activation Function 

 
 

3.1.3 Learning Rate and Momentum Parameter 
 
Parameters other than the activation function need to be considered as well depending on 
the training algorithm chosen.  For the back propagation algorithm, the two most 
common are the learning rate and momentum parameter.  In this algorithm, the learning 
rate will dictate the magnitude of the weight changes.  Values range from 0 to 1 and 
choosing a learning rate for the ANN model will have a significant impact on the results.  
Larger learning rates will move the algorithm too quickly and possibly skip the optimal 
solution.  Small learning rates increase the computational time of the model.  The 
momentum parameter is meant to improve the BPA by allowing for a larger learning rate 
that will result in faster convergence of the model but will minimize the tendency to 
bypass the optimal solution (Rumelhart et al., 1986). 
 
 

3.2 BOX-COMPLEX METHOD 
 
The Box-Complex method is an algorithm used to determine a set of decision variables to 
optimize an objective function developed by Box (1965).  A complex is a flexible 
mathematical figure made up of at least n+1 points where n is the number of variables 
(Ormsbee 1981). The complex lies in n dimensional space.  Each point consists of 
coordinates which corresponds to individual variables of the objective function (Ormsbee 
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1981).  The complex moves around the solution space by expanding in contracting in any 
direction as long as it is feasible.   
 
The generation of the initial complex begins with determining a feasible initial point that 
satisfies both explicit and implicit constraints.  Implicit constraints are those that limit the 
value of some group of variables (i.e. F(x)<0) and explicit constraints limit the values of 
an individual variable (i.e. 0<Xi<100).  Once this initial feasible point has been 
determined, a random number generator is used to obtain the remaining points of the 
initial complex.  The random number generator should be set up to return variables 
within the range of the explicit constraints.  It is then necessary to check and see if the 
point satisfies the implicit constraints.     
 
If an infeasible point is generated the following process will move it back towards 
feasibility.  First, determine the centroid of the feasible points already determined 
(including the initial point).  Move the infeasible point halfway towards this centroid.  If 
the point is still infeasible continue moving it half the remaining distance towards the 
centroid until is becomes feasible.  Continue this process until n+1 feasible points have 
been generated to form the initial complex.   
 
Expansion and contraction of the complex may now take place.  Compute the value of the 
objective function at each point in the complex.  Determine the point that produces the 
worst results (Pworst) (worst is defined as opposite the goal of the objective function).  A 
new point (Pnew) is then determined by going a specific distance away from Pworst in the 
direction of the centroid of the remaining feasible points, Pcentroid.   
 

( ) worstcentroidnew PPP αα −+= 1  Equation 4 

 
The value α is an expansion coefficient and Box recommended a value of 1.3.  Evaluate 
the objective function at Pnew and determine if it is better than Pworst.  If Pnew is better, 
Pworst is disregarded and Pnew becomes part of the complex.  If Pnew is worse than Pworst, 
then a new point Pnew2 is contracted back towards the centroid at another specified 
distance based on the contraction coefficient. 
 

( ) centroidnewnew PPP ωω ++= 12  Equation 5 

 
A value of 0.5 is recommended as this contraction coefficient (Tufail 2007). This 
continues until a Pnew is obtained that produces a better value of the objective function 
than Pworst.  This process shifts the complex towards better values of the objective 
function. 
 
Eventually this process of expansion and contraction will shrink the complex near the 
optimal values of the objective function.  It will terminate after consecutive objective 
functions give the same result, indicating that the complex has converged on the centroid 
(Ormsbee 1981).  For a more in depth description of the Box-Complex method, please 
see Box (1965), Ormsbee (1981), and Tufail (2007). 
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3.2.1 Computer Code 
To perform the box-complex algorithm, a C++ computer code was used.  This code was 
originally developed by Tufail (2007) for two variables and was adjusted to fit the 
problem of this report with 18 variables.   

 
 

4. RESULTS AND DISCUSSION 
 
The box complex program was run for a number of different iterations.  Table 2 shows 
each run with the number of iterations, the constraint value, and the maximum cost for 20 
years of operation.  There was minimal improvement after 20,000 iterations, but it was 
not significant enough to display.  The final set of pumping rates from the 20,000 
iteration run is displayed in Table 3.     
 

Table 2: Total Pumping Cost 

Iterations

2027 TCE 
Concentration 

(ug/L)

Total Cost 
(millions of 

dollars)
200 29.43 $136.4
500 29.89 $126.1
750 30.00 $123.4
1000 29.96 $121.4
1500 29.97 $121.0
2000 29.96 $120.8
5000 29.92 $120.2
10000 29.89 $120.0
20000 29.82 $119.4  

 
Table 3: Pumping Rate at Each Well for Optimal Strategy 

Extraction 
Well 

Pumping 
Rate (gpm)

Cost per 
gpm 

1 60.9 $0.05
2 25.8 $0.06
3 0.0 $0.04
4 54.6 $0.05
5 1.4 $0.06
6 35.8 $0.04
7 0.0 $0.05
8 0.0 $0.06
9 0.0 $0.04
10 72.9 $0.05
11 0.0 $0.06
12 5.5 $0.04
13 12.8 $0.05
14 50.5 $0.06
15 0.5 $0.04
16 66.8 $0.05
17 49.5 $0.06
18 0.0 $0.04  
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It is obvious that there are some wells that should be doing most of the pumping and 
others that should not be pumping at all.  One interesting trend is that the wells with the 
lowest cost per gpm (i.e. $0.04) were not being used as much and the more expensive 
wells were being used more.  This may be an indication that the influence of a well over 
the TCE concentration is more important than the unit cost per well.  This shows that the 
total number of wells being used can be reduced by using wells that have a greater 
influence over the TCE concentration regardless of the unit cost per well.  The results of 
the optimization show that by using this approach a lower cost can be achieved.   
 
Table 2 shows another trend in the data that sticks out.  After 1500 iterations, the cost and 
maximum value of the constraint both begin to decrease.  This trend continues up to and 
past the 20,000 iterations.  However, after 20,000 iterations it becomes insignificant.  The 
reason for this may be the extremely high number of combinations that are possible 
meaning that there are local minimum that the optimization is picking up.  It requires 
more iterations to get out of that local minimum to find the global minimum.   
 
The program used allowed pumping values to reach up to 6 decimal places and obviously 
this would not be a practical value for a pump to operate.  This was a limitation of the 
program and it could be fixed easily by an experienced programmer.  However, for this 
report it was not fixed, thus pumping rates were computed for up to 6 decimal places and 
then rounded to one decimal place for presentation.  If pumping rates were limited to 
integer values then the results would most likely be different.  Wells with small pumping 
rates would most likely not be used for practical purposes (i.e. Extraction Wells 5, 12, 13, 
and 15).  It may be better to completely eliminate these wells from the optimization and 
only used wells that are greater contributors.   
 
 

5. CONCLUSIONS 
 
The pumping strategy listed above will give the optimum performance to limit the total 
cost.  However, it is not practical and must be adjusted.  The adjustments can be made by 
making two simple adjustments to the program 1) limit the pumping rates to integer 
values and 2) require a minimum pumping rate (i.e. 15 gpm).  These two adjustments will 
bring the optimization solution much closer to a practical pumping strategy that can 
reduce the TCE concentration below a set level.   
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